
Review Article

Macropinocytosis and SARS-CoV-2 cell entry

Xiaowei Sun1△, Wenyue Zheng1△, Rui Hua1, Yujie Liu1, Li Wang1, Yun-Gi Kim2, Xinqi Liu3,
Hitomi Mimuro4, Zhongyang Shen5,6*, Lian Li1*, Sei Yoshida1,5,7*

1 State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences,
Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China;

2 Research Center for Drug Discovery, Faculty of Pharmacy and Graduate School of
Pharmaceutical Science, Keio University, Minato-Ku, Tokyo 105-8512, Japan;

3 State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry and Molecular Biology,
College of Life Sciences, Nankai University, Tianjin 300071, China;

4 Department of Infection Microbiology, Research Institute for Microbial Diseases,
Osaka University, Osaka 565-0871, Japan;

5 Organ Transplant Department, Tianjin First Central Hospital, Tianjin 300192, China;
6 NHC Key Laboratory of Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300192, China;

7 Research Institute of Transplant Medicine, Nankai University, Tianjin 300071, China.

ABSTRACT

Macropinocytosis  is  a  type  of  large-scale  endocytosis  that  is  triggered by the  interaction of  receptor  proteins
and  ligands,  such  as  growth  factors,  cytokines,  chemokines,  and  lipopolysaccharide  (LPS).  Macropinocytosis
ingests  the  extracellular  fluid  solutes  and  conveys  them  into  the  lysosome  in  the  context  of  cell  growth  and
differentiation.  Aside  from  its  physiological  functions,  macropinocytosis  has  been  observed  in  viral  infections.
While  the  infectious  mechanism  of  severe  acute  respiratory  syndrome  coronavirus  2  (SARS-CoV-2)  is  still
unknown, recent studies suggest the involvement of macropinocytosis in its cell entry. In this review, we discuss
the  roles  of  endocytosis  in  SARS-CoV/SARS-CoV-2  cell  entries  and  propose  a  hypothetical  role  of
macropinocytosis in SARS-CoV-2 cell entry.
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INTRODUCTION

Cell  membrane  dynamics  are  controlled  precisely
by  signal  transduction  and  cytoskeletal  mechan-
isms[1−3].  Endocytosis  is  a  cellular  mechanism  by

which  cells  ingest  extracellular  components  by
modulating  the  plasma  membrane.  Based  on  their
functions  and  mechanisms,  endocytosis  can  be
categorized  into  at  least  four  different  types[4−6]:
clathrin-mediated  endocytosis,  caveolae-dependent
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endocytosis,  phagocytosis,  and  macropinocytosis.
While the first two types of endocytosis are relatively
small-scale  ingestion  processes  (less  than  200  nm  at
the  diameter  of  the  resulting  vesicle),  the  last  two
evoke large-scale uptake (more than 200 nm in scale).
Each  endocytosis  has  a  critical  role  in  cell
metabolism.  The  functions  can  be  utilized  by
pathogens for their infection strategies[7].

Macropinocytosis  is  induced  by  growth  factors,
cytokines,  chemokines,  LPS,  and  chemical  com-
pounds[8−10].  During  the  process,  target  fluid  solutes
are  surrounded  by  an  elongated  and  waved  plasma
membrane,  then  isolated  from  the  extracellular
environment via the  fusion  of  the  evoked  membrane
structure,  which  becomes  a  vesicle  called  a
macropinosome  (macropinosome  formation).  The
macropinosome  is  pinched  out  from  the  plasma
membrane  and  moves  to  the  center  of  the  cell  using
the  microtubule  network  until  it  encounters  the
lysosome  and/or  other  organelles  (macropinosome
maturation).

It has been shown that some pathogens can "hijack"
macropinocytosis  and  invade  the  host  cell[7,11].  For
instance, the pathogenic bacteria Salmonella typhimur-
ium (2.0 –5.0  mm  in  length  and  0.5 –1.5  mm  in
diameter) and Shigella flexneri (1.0–3.0 mm in length
and 0.4–0.6 mm in diameter) inject their own proteins
into  the  host  cells  to  induce  macropinocytosis  as  a
means  of  cell  entry[7,12−13].  The  vaccinia  (300  nm  in
length and 200 nm in diameter) and Ebola (1 000 nm
in  length  and  80  nm  in  diameter)  viruses  also  take
advantage  of  macropinocytosis[11,14−15].  Likewise,
although  the  molecular  function  is  not  yet  clear,  the
involvement  of  macropinocytosis  in  severe  acute
respiratory  syndrome  coronavirus  2  (SARS-CoV-2)
cell  entry  has  been  suggested[16].  Inhibitor  treatment
experiments  show  that  Abl  and  PIKfyve,  both  of
which  regulate  macropinocytosis[17−19],  have  some
roles  in  SARS-CoV-2  cell  entry[20−21].  More  directly,
the  macropinocytosis  inhibitor  ethylisopropy-
lamiloride (EIPA) blocks cell entry[22].

In  this  review,  we  will  discuss  the  role  of
macropinocytosis  in  SARS-CoV-2  cell  entry.  Since
the genome sequence reveals high similarity between
severe acute respiratory syndrome coronavirus (SARS-
CoV) and SARS-CoV-2[23−24], knowledge from SARS-
CoV study can  be  used  as  a  framework to  determine
research directions for investigating SARS-CoV-2 cell
entry[25].  Thus,  firstly,  we  present  an  overview  of
studies  on  endocytosis  and  SARS-CoV  cell  entry  as
the  background  information.  We  then  describe  the
molecular  mechanism  of  SARS-CoV-2  cell  entry,
focusing on macropinocytosis. 

ENDOCYTOSIS
 

Background of endocytosis

One  of  the  critical  differences  between  small  and
large  endocytosis  is  the  membrane  dynamics
morphology.  While  membrane  invagination  is  the
precursor  of  small  size  endocytosis,  the  membrane
ruffle  is  the  first  step  of  large-scale  endocytosis
(Fig.  1A).  Although  endocytosis  is  an  infection
strategy  for  pathogens  to  invade  the  host  cells,
phagocytosis  is  a  rarely  observed  viral  entry  strategy
due  to  the  ingestion  process[7,26].  Phagocytosis  is
regulated by the "zipper mechanism" for the uptake of
solid  objects[6] (Fig.  1A).  In  this  mechanism,
membrane  proteins  function  as  sensors  to  identify
objects  such  as  bacteria  and  dead  cells.  The
interaction  between  these  objects  and  sensor  proteins
trigger  membrane  ruffles.  The  plasma  membrane
elongates  and  expands  according  to  the  shape  of  the
objects  and  forms  a  cup-like  structure;  then,  the
structure  gradually  fuses  to  become  a  sphere-like
structure,  called  a  phagosome.  The  virus  is  not  large
enough  to  be  engulfed  by  phagocytosis.  The
mechanisms of SARS-CoV/SARS-CoV-2 cell entries,
clathrin-mediated  endocytosis,  caveolae-dependent
endocytosis,  and  macropinocytosis  have  previously
been  proposed[16,25].  There  are  several  established
inhibitors  for  each  endocytosis,  although  in  some
cases their activities are unspecific[27]. 

Clathrin-mediated endocytosis

Clathrin-mediated  endocytosis  occurs via the
formation  of  small  membrane  invaginations  called
clathrin-coated  pits  (CCPs)[4,28] (Fig.  1A).  CCPs  are
composed  of  clathrin  triskelion,  which  consists  of
three  clathrin  heavy  chains  and  three  clathrin  light
chains, and adaptor proteins. Due to the uniqueness of
their  structure,  clathrin  triskelia  are  assembled  as  a
cup-like  shape,  and  then  interact  with  the  plasma
membrane via adaptor  proteins.  Construction  of  the
cup-like  shape  assembly  beneath  the  plasma
membrane produces  a  force,  which generates  a  small
membrane  invagination  formation  known  as  a  CCP.
Once the CCP matures, the shape changes to a vesicle-
like  structure  with  a  diameter  of  less  than  200  nm.
Large  GTPase  dynamin  is  recruited  to  the  nascent
CCP  for  fission  from  the  plasma  membrane,  and  the
resulting 100 nm size vesicle, called a clathrin-coated
vesicle (CCV), is released into the cytosol. Because of
its  critical  role  in  CCV  formation,  the  inhibition/
depletion  of  clathrin  used  to  block  clathrin-mediated
endocytosis  has  become  an  established  method.
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Chloroquine[29],  chlorpromazine[29],  dynasore[30],  and
pitstop 2[31] are often used as the inhibitors of clathrin-
mediated endocytosis[27,32].  Clathrin-mediated endocy-
tosis  is  the  most  prominent  and  abundant  viral  entry
pathway among mammalian viruses[7,26].
 

Caveolae-dependent endocytosis

The  precise  molecular  mechanism  of  caveolae-
dependent  endocytosis  is  not  clear[5,33] (Fig.  1A).
Caveolae  are  small  plasma  membrane  invaginations
(approximately  70  nm  in  diameter)  formed  by

caveolins,  which  consist  of  hairpin-like  integral
membrane proteins, together with associated proteins.
Caveolins  cluster  with  specific  lipids  at  the  plasma
membrane, then form a small invagination, known as
a  caveola,  through  the  interaction  between  the
caveolins  and  adapter  proteins.  Caveolae-dependent
endocytosis occurs once the caveolae are pinched off
from  the  plasma  membrane  by  dynamin,  which
localizes  at  the  neck  of  caveolae.  Methyl-β-
cyclodextrin  (MβCD)[34],  filipin[35],  and nystatin[35] are
used as caveolin-mediated endocytosis inhibitors[27,32].
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Fig. 1 Summary of different types of endocytosis. A: Comparison of different types of endocytosis. Membrane invagination is the
precursor  of  clathrin-mediated  endocytosis  and  caveolae-dependent  endocytosis.  They  are  relatively  small  in  size  (less  than
200 nm of the diameter of the resulted vesicles). Membrane ruffle is induced as the first step of phagocytosis and macropinocytosis,
and the resulting vesicles are larger than 200 nm. Details of the molecular mechanisms are described in the main text. B: Molecular
mechanism of macropinocytosis, which consists of macropinosome formation (STEPs 1-4) and macropinosome maturation (STEPs 5-
6). STEPs 1-2: Extracellular stimuli induce membrane ruffles via Ras, Rac, and PI3K, followed by the formation of macropinocytic
cups. Phosphatidylinositol (3,4,5)-triphosphate (PIP3) is generated/accumulated in the cups by an unknown mechanism. STEPs 3-4:
PIP3 is converted to diacylglycerol (DAG) by PLCg and phosphatidylinositol 3,4-biphosphate (PI(3,4)P2) by SHIP. DAG activates
PKC and Ras, which trigger cup closure. Ras also activates RIN-Abl pathway to regulate actin cytoskeleton. STEPs 5-6: The cups are
closed,  forming  vesicles,  known  as  macropinosomes.  PI(3,4)P2  is  converted  to  phosphatidylinositol  3-phosphate  (PI3P)  at
macropinosomes,  where Rab5a is  recruited.  Ras is  also recruited to macropinosomes at  the early stage.  Once Rab5a is  dissociated
from macropinosomes, Rab7 is recruited at the late stage. PI3P is converted to phosphatidylinositol 3,5-biphosphate (PI(3,5)P2) by
PIKfyve. Microtubule and vimentin are also involved in the process.
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Although  the  physiological  role  of  caveolae-
dependent  endocytosis  is  indeterminate,  the  invol-
vement  of  caveolae  in  cell  entry  by  viruses  has  been
proposed[7].  For  instance,  simian  virus  40  (SV40)
utilizes caveolae for cell entry[36]. 

Macropinocytosis

While  phagocytosis  is  called  a  "cell-eating"  pro-
cess,  because  it  ingests  solid  targets  such  as  bacteria
and  dead  cells,  macropinocytosis  is  called  a  "cell-
drinking"  process;  a  large-scale  extracellular  solute
uptake  process  (Fig.  1B)[6,8−10,37].  Historically,
"pinocytosis"  was  found  by  Warren  Lewis  in  the
1930s[38].  After  the  discovery,  the  application  of
electron  microscopy  enabled  researchers  to  observe
nano  scale  cellular  events,  such  as  clathrin-mediated
endocytosis  and  caveolae-dependent  endocytosis,  in
other  words  "micro"-pinocytosis.  Thus,  the  original
"pinocytosis"  was  renamed  as  "macropinocytosis",
which is a clathrin/caveolae-independent cell drinking
mechanism.  Macropinocytosis  consists  of  two  major
processes:  macropinosome formation and macropino-
some  maturation[8].  After  ligand  stimulation,  mem-
brane  ruffles  are  induced  and  changed  into  cup-like
structures to engulf extracellular solutes by closing the
cup.  Interaction  between  the  ligand  and  receptor
protein  activates  at  least  three  signaling  molecules,
small  GTPases Ras and Rac and phosphatidylinositol
3-kinase  (PI3K)[6,37].  Activated  Ras  and  Rac  induce
membrane ruffles, which gradually change to cup-like
structures.  Inside  the  cups,  phosphatidylinositol
(3,4,5)-triphosphate  (PIP3)  is  generated  by  activated
PI3K and then converted to diacylglycerol (DAG) by
PLCγ1[37,39−40]. DAG activates protein kinase C (PKC)
to  close  the  open  area  of  the  cups  following  the
pinching off the resulting vesicles as macropinosomes
from the plasma membrane. Cytoskeletal mechanisms,
such  as  actin,  vimentin,  and  microtubules,  are  also
involved  in  the  formation  of  macropinosome[6,41−42].
Ras  effector  RIN  functions  as  a  guanine  nucleotide
exchange  factor  (GEF)  for  small  GTPase  Rab5a,
which is recruited to macropinosomes[18,37,43]. RIN also
activates  the  tyrosine  kinase  Abl,  which  regulates
actin dynamics during macropinosome formation[17−18].
Ethyl-isopropyl  Amiloride  (EIPA)  prevents  the
activation of Rac1 by decreasing submembranous pH,
and is used as a macropinocytosis inhibitor[27,44].

Macropinosome maturation is  defined as  a  process
from  the  end  of  macropinosome  formation  to
lysosomal  fusion[8].  Nascent  macropinosomes  depart
from  the  plasma  membrane  and  migrate  into  the
cytosol along to the microtubule network. Phosphoin-
ositide  (PI)  signaling  pathways  and  small  GTPases

have  critical  roles  in  the  maturation  process[37,45−46].
PIP3  in  the  cup  structure  is  also  converted  to
phosphatidylinositol 3,4-bisphosphate (PI (3,4) P2) by
lipid phosphatase SHIP2 when the cup is closed[45]. PI
(3,4)  P2  is  converted  to  phosphatidylinositol  3-
phosphate  (PI3P)  by  inositol  polyphosphate-4-
phosphatase type  Ⅱ (INPP4B)  after  nascent
macropinosomes  start  to  migrate[45].  Phosphoinositide
kinase  PIKfyve  phosphorylates  PI3P  to
phosphatidylinositol  3,5-biphosphate  (PI  (3,5)  P2)  to
regulate the maturation process[19]. RIN activates small
GTPase and Rab5a in early macropinosomes[18]. Once
Rab5a  is  dissociated  from  the  macropinosomes,
another  small  GTPase  Rab7  is  recruited[37].
Recruitment  of  H-Ras  to  early  macropinosomes  has
also been observed[47]. The role of macropinocytosis in
virus  entry  is  well  studied,  and  there  are  several
outstanding reviews[7,11]. 

SARS-CoV cell entry
 

SARS-CoV spike protein

Although  the  precise  mechanism  is  still  unknown,
SARS-CoV has been shown to induce endocytosis to
invade  the  host  cells[48−49].  SARS-CoV  is  a  spherical
virus  with  a  diameter  of  80 –120  nm.  The  viral
envelope consists of a lipid bilayer and three proteins:
the  membrane  protein,  envelope  protein,  and  spike
protein.  The  Spike  protein  (CoV  S  protein)  forms
trimers  as  protrusion-like  structures  on  the  viral
surface.  The  CoV S  protein  is  a  180-200  kDa  type  I
transmembrane  glycoprotein  protein[48,50−51](Fig.  2A).
It has a cleavage site in the ectodomain and the CoV S
protein  can  be  divided  into  two  functional  domains,
S1  and  S2[52].  The  receptor  binding  domain  (RBD)
exists as a 190-amino acid fragment in the S1 domain
as  a  critical  site  for  interaction  with  ACE2[50,53−54].
More  specifically,  structural  analysis  revealed  that
RBD  interacts  with  ACE2 via the  receptor-binding
motif  (RBM)  as  a  70-amino  acid  fragment[55].  While
the  cleavage  site  at  the  boundary  of  S1  and  S2  is
identified  (S1/S2  cleavage  site),  there  is  another
cleavage  site  in  S2  known as  the  S2 cleavage  site[56].
Several  host  proteases  have  been  identified  to
recognize cleavage sites for the priming of CoV-S[48−49].
For  instance,  trypsin  cleaves  at  the  SLLR/S
sequence[57] and  cathepsin  cleaves  at  the  VAYT/M
sequence[58] in  the  S1/S2  cleavage  site.  Among  these
proteases,  transmembrane  protease  serine  2
(TMPRSS2)  has  been  well  studied  in  the  context  of
cell entry[49,56,59−62].

Angiotensin  converting  enzyme  2  (ACE2)  is
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identified  as  the  functional  receptor  of  SARS-CoV
cell  entry[53,63−65].  ACE2  is  a  110-120  kDa  type-I
transmembrane  protein  (805  amino  acids)[66−67].  As  a
monocarboxypeptidase,  ACE2 plays  a  critical  role  in
the  renin-angiotensin  system  to  regulate  the
physiology  of  the  cardiovascular  system,  such  as
blood  pressure  and  fluid  balance[66].  Surprisingly,
excluding  the  case  of  SARS CoV cell  entry,  the  role
of  ACE2  in  endocytosis  has  not  yet  been  shown.  A
previous  study  showed  that  ACE2  interacts  with
TMPRSS2  at  the  surface  of  SARS-CoV-infected
293T  cells[51,60].  Although  the  role  of  ACE2  in  viral
entry  has  been  strongly  suggested,  the  precise
mechanism  by  which  the  interaction  of  the  CoV  S
protein and ACE evokes endocytosis is still unknown. 

Background of SARS-CoV cell entry

Since SARS-CoV requires biosafety level 3 (BSL3)
facilities,  pseudotyped particles  have often been used
to investigate the molecular mechanisms of cell entry
in  vitro[68].  It  has  been  shown  that  pseudoviruses
expressing the CoV S protein efficiently enter human
cell lines such as the embryonal kidney cell line 293T
and  the  hepatoma  cell  lines  HepG2 and  Huh7[65,69−70].
Moreover,  in  animal  studies,  the  pseudovirus  was
found  to  infect  African  green  monkey  kidney  cell
lines Vero[65] and Vero E6[69]. NH4Cl, which is used as
a lysosomotropic agent[71], inhibits the infection of the
pseudovirus  in  293T  cells,  Huh7  cells,  and  the
monkey  kidney  cell  line  COS7  cells  expressing
ACE2[65,69−70].  The  grivet  kidney  cell  line  BSC-1  is

used for the time-course experiment[72].
Historically, the African green monkey kidney cell

line Vero E6 has been used as  the standard model  to
investigate  the  molecular  mechanism  of  cell  entry
because  ACE2  was  identified  as  the  CoV-S  target
protein  using  Vero  E6  lysates[63] and  its  expression
level  is  robust[73].  Given  that  lung  epithelial  cells  are
the  initial  target  of  the  viral  infection[49],  human lung
epithelial  cell  line  Calu-3  cell  is  characterized  as  an
alternative in  vitro model[74].  This  paper  showed  that
ACE2  expression  in  the  apical  domain  of  polarized
Calu-3  was  observed,  and  that  SARS-CoV  (Urbani
strain)  was  co-localized  with  ACE2 in  infected  cells.
ACE2  expression  in  Calu-3  has  also  been  confirmed
by other researchers[73,75]. It is also shown that SARS-
CoV (Frankfurt 1 strain) infects Calu-3 cells[75]. 

Clathrin-mediated  endocytosis  and  caveolae-
dependent endocytosis in SARS-CoV cell entry

The  role  of  clathrin-mediated  endocytosis  in  viral
entry  has  been  proposed[70].  In  this  study,  the  human
hepatocyte  cell  line  HepG2  was  mainly  used.  The
authors  showed  that  inhibition  of  clathrin-mediated
endocytosis by chlorpromazine attenuated the entry of
pseudovirus  into  the  cells.  Treatment  with  methyl-β-
cyclodextrin  (MβCD)  partially  inhibited  entry.  Thus,
they  concluded  that  the  pseudovirus  internalizes  into
HepG2 cells via clathrin-mediated endocytosis but not
caveolae-dependent  endocytosis.  Although  another
study  argues  against  this  conclusion  by  insisting  that
HepG2  is  not  an  appropriate  cell  culture  system  to
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investigate  ACE2-dependent  cell  entry  because  the
expression  level  of  ACE2  is  not  robust[76],  several
reports  also  suggest  the  role  of  clathrin-mediated
endocytosis  in  the  viral  entry.  Sequence  analysis
revealed that ACE2 has a calmodulin binding domain;
biochemical  methods  confirmed  the  interaction  of
calmodulin  and  ACE2[77−78].  It  has  been  shown  that
calmodulin regulates clathrin-mediated endocytosis[79].
Therefore, it is hypothesized that stimulation of ACE2
by  the  CoV  S  protein  triggers  clathrin-mediated
endocytosis.

The role of caveolae-dependent endocytosis in cell
entry  has  been  discussed.  Cell  entry  by  SARS-CoV
(Frankfurt-1  strain)[80] or  pseudovirus[81] into  Vero E6
cells  was  inhibited  by  MβCD  treatment.  MβCD  also
partially blocks the entry efficiency of the pseudovirus
into  HepG2  cells[70].  However,  other  caveolae-
dependent endocytosis inhibitors, filipin, and nystatin,
do  not  block  cell  entry  of  the  pseudovirus  into  Vero
E6  cells[81].  As  another  approach  to  determining  the
role of caveolae in cell entry, the localization of ACE2
in  the  plasma  membrane  has  also  been  studied.
Sucrose  fractionation  assay  using  Vero  E6  cells  and
Chinese  hamster  ovary  (CHO)  cells  showed  that
ACE2  is  not  located  in  the  fraction  containing  lipid-
raft  related proteins[80,82],  suggesting that  ACE2 is not
localized  in  lipid  rafts[80].  However,  biochemical  data
using  Vero  E6  cell  lysates  from  other  groups  show
that  ACE2  is  localized  in  the  caveolin-1-positive
fractions[83] or in the fractions of raft marker floitin[84].
This  discrepancy  could  be  explained  by  the  different
buffer  conditions  as  well  as  the  difference  between
CHO and Vero E6 cells[84],  or could be interpreted as
the contribution of an ACE2-independent mechanism. 

Clathrin/caveolae-independent endocytosis and ma-
cropinocytosis in SARS-CoV cell entry

The  role  of  clathrin/caveolae-independent  endocy-
tosis in SARS-CoV cell entry was proposed by Wang
et al[76,81].  The recombinant fusion protein of the CoV
S protein and human IgG Fc fragment (named S1190-
Fc) was added to human embryonic kidney 293E cells
expressing  GFP-ACE2  (HEK293E-ACE2-GFP),  the
co-localization of S1190-Fc and GFP in the cells was
observed  3h  later.  Pseudovirus  infection  in  Vero  E6
was  barely  inhibited  by  treatment  with  the  clathrin-
mediated  endocytosis  inhibitor  chlorpromazine,
knockdown  of  the  clathrin  heavy  chain,  and
overexpression  of  the  dominant  negative  form  of
Eps15,  which  is  required  for  clathrin-mediated
endocytosis.  Meanwhile,  colocalization  of  caveolin-1
and  the  pseudovirus  was  not  observed  and  caveolae-
dependent  endocytosis  inhibitors  nystatin  and  filipin

did not  block cell  entry  of  the  pseudovirus  into  Vero
E6 cells.

These  data  indicate  that  the  interaction  of  CoV  S
protein and ACE2 is sufficient to induce the ingestion
process  and  that  the  process  is  clathrin/caveolae-
independent  endocytosis,  presumably  macropino-
cytosis.  However,  as  the  authors  mentioned  in  the
discussion  section[76],  direct  evidences  are  needed  to
conclude  if  the  virus  takes  advantage  of  macrop-
inocytosis  to  invade  into  the  host  cells.  Interestingly,
besides  these  studies,  there  are  several  reports
suggesting  the  role  of  macropinocytosis  in  SARS-
CoV  cell  entry[85].  It  was  shown  that  SARS-CoV
(Urbani  strain)  induces  membrane  ruffles  in  ACE2-
expressing  murine  delayed  brain  tumor  (DBT)
astrocytoma  cells[86].  Macropinosome  formation  and
SARS-CoV-induced cell entry share several signaling
molecules,  such  as  PI3K,  vimentin,  Abl,  and  Ras
(Fig. 1B). PI3K inhibitors LY294002 and wortmannin
block  the  entry  of  pseudovirus  cells  into  Vero  E6
cells[87].  Biochemical  methods  show  a  direct
interaction  of  vimentin  and  the  CoV  S  protein;
pseudovirus  entry  into  Vero  E6  cells  is  partially
blocked  by  the  knockdown  of  vimentin[88].  Abl
inhibitor  imatinib  mesylate  blocks  SARA-CoV
(MA15 strain)-induced  cytopathic  effects  in  Vero  E6
cells[89],  and  attenuates  the  replication  of  SARS-CoV
(MA15  strain:  a  mouse-adapted  SARS-CoV)[89−90] in
Vero  E6 and Calu3 cells.  Although,  the  drug did  not
affect  the  colocalization  of  LAMP1  and  the
pseudovirus  in  Huh7  cells,  suggesting  that  it  blocks
the  cell  entry  process  after  endocytosis[90].  Treatment
with purified CoV-S induces ERK phosphorylation in
human Ⅱ pneumocyte  A549  within  15  min via
ACE2,  which  is  blocked  by  the  Ras  inhibitor,
suggesting  that  an  interaction  between  CoV-S  and
ACE2 activates Ras[91]. 

SARS-CoV-2 cell entry
 

Background of SARS-CoV-2 cell entry

Sequence  analysis  of  SARS-CoV-2  revealed  that
the  CoV-2  S  protein  and  CoV  S  protein  share  more
than  70%  amino  acid  identity[23−24] (Fig.  2B).  It  was
also  shown  that  SARS-CoV-2  invades  the  human
epithelial-like  cell  line  HeLa  expressing  human
ACE2, but not the control cells, suggesting that ACE2
is  the  receptor  of  SARS-CoV-2  cell  entry[24].  Since
then,  the  study of  SARS-CoV-2 has  been carried  out
according  to  the  hypothesis  that  SARS-CoV  and
SARS-CoV-2  share  molecular  mechanisms  in  cell
entry[20,92].

Inhibitor  treatment  experiments  have  been
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performed to investigate the molecular mechanism of
SARS-CoV-2  cell  entry[92−95].  Lysosomal  function
inhibitors NH4Cl and bafilomycin A block viral entry
into  293T  cells  expressing  ACE2[20].  In  addition,
hydroxychloroquine  and  chloroquine,  which  also
inhibit lysosomal function, block cytotoxicity[93]. These
results suggest the involvement of lysosomal mechan-
isms  in  cell  entry[16,25].  To  date,  the  role  of  clathrin-
mediated  endocytosis  is  controversial.  Clathrin-
mediated  endocytosis  inhibitors,  amantadine[96] and
chlorpromazine,  barely  block  SARS-CoV-2  induced
cellular cytotoxicity in Vero E6 cells[95]. Purified-CoV-
2  S  protein  induces  endocytosis  in  293T  cells
expressing  ACE2,  which  is  blocked  by  clathrin-
mediated  endocytosis  inhibitors  dynasore  and
Pitstop2[97].  Because  the  experimental  systems  and
drugs used were not the same, it would be difficult to
determine  the  accuracy  of  each  set  of  data.  Pseudo-
virus  entry  into  293T  cells  expressing  ACE2  was
blocked by cathepsin inhibitor E64D and cathepsin L-
specific  inhibitor  SID  26681509[20],  suggesting  that
protease activity is necessary for cell entry.

Vero  E6  cells  expressing  TMPRSS2  are  more
susceptible  to  SARS  CoV-2  infection  than  other
control  cell  lines[92,98].  The  TMPRSS2  inhibitor
camostat  mesylate  blocks  pseudovirus  entry  into  a
variety of cell lines, such as Calu-3, HeLa expressing
ACE2,  Caco-2  (human  epithelial  cell),  and  MRC-5
(human  lung  fibroblasts)[92,99].  The  role  of  CD-147  in
SARS  CoV-2  cell  entry  has  been  shown[94,100−101].  As
other  receptor  candidates,  CD209L  (L-SIGN)  and
CD209  (DC-SIGN),  have  been  suggested[102].  Similar
to  SARS-CoV,  the  Abl  inhibitor  imatinib  blocks
SARS-CoV-2 cell entry into Vero cells[21]. 

Macropinocytosis and SARS-CoV-2 cell entry

The  macropinocytosis  inhibitor  EIPA  substantially
decreased  the  concentration  of  viral  RNAs  in  the
culture supernatant of SARS-CoV-2-infected Vero E6
cells[22].  Several  airborne  viral  pathogens,  such  as
influenza  A  virus[103] and  human  adenovirus  serotype
35  (HAdV-35)[104],  enter  into  the  host  cells via
macropinocytosis.  The  expression  levels  of  proteins
related  to  macropinocytosis  are  relatively  high  in
pneumocytes[16].  Based  on  these  reports,  the  role  of
macropinocytosis in SARS CoV-2 infection has been
proposed[16].

Genome sequencing revealed that there are at least
three cleavage sites in the CoV-2 S protein[105]. While
the  CoV-2  S  protein  shares  the  S1/S2  cleavage  site
(AYT/M  sequence)  and  S2'  cleavage  site  (KR/SF
sequence)  with  CoV S  protein,  there  is  an  additional
S1/S2 cleavage site  (PRRAR/SV sequence),  which is

recognized  by  furin  protease[99,105−108] (Fig.  2C).  In
fact,  biochemical  methods  using  furin-targeting
siRNA treatment and furin inhibitor decanoyl-RVKR-
CMK[109] showed  that  the  S1/S2  cleavage  site  of  the
CoV-2 S protein  is  dependent  on furin  function[99,108].
The  cell  entry  efficiency  of  pseudovirus,  which
express  the  furin-cleavage-site  mutant  CoV-2  S
protein,  into  Calu-3  cells,  MRC-5  cells,  and  HeLa
cells  expressing  ACE2  were  lower  than  that  of  the
control pseudovirus[99]. These results suggest that furin-
dependent  cleavage  at  the  S1/S2  site  is  critical  for
SARS  CoV-2  cell  entry  but  not  for  SARS  CoV  and
that  this  site  has  a  role  in  determining the tropism of
SARS  CoV-2[105,110].  It  has  been  proposed  that
TMPRSS2  and  furin  coordinately  work  with  the
priming of the CoV-2 S protein[99,108].

After  furin  cleavage,  the  RRAR  sequence  is
exposed  at  the  C-terminal  end  of  the  S1  sub-
domain[105] (Fig. 2C). The RRAR sequence at the end
of  the  C-terminus  is  called  CendR,  which  binds  and
activates the receptor protein neuropilin-1 (NRP1)[111].
Accordingly,  NRP-1  is  identified  as  a  novel  receptor
for  SARS CoV-2 cell  entry  in  at  least  three  different
studies[110,112−113].  Expression  of  NRP1  enhances
pseudoviral  entry  into  293T  cells  and  Caco-2  cells;
the infection efficiency is attenuated by the addition of
anti-NRP1  antibody[110],  SARS  CoV-2  (SARS-CoV-
2/human/Liverpool/REMRQ001/2020  isolate)  cell
entry  into  HeLa  cells  expressing  ACE2  hindered  by
knockout  of  NRP1[112].  Biochemical  methods  suggest
the  interaction  between  NRP1  and  CoV-2  S
protein[112]. These results suggest that NRP1 is another
key  receptor  for  SARS-CoV-2  cell  entry  and  the
interaction  between  CoV-2  S  protein  and  NRP1
induces  endocytosis.  Interestingly,  it  has  been  shown
that  stimulation  of  NRP1  induces  macropinocytosis-
like  endocytosis:  nanoparticle  beads  with  CendR
peptide  induce  membrane  ruffles  which  are  engulfed
into large-scale vesicles in the prostate tumor cell line
(PPC1)  and  HeLa  cells  expressing  NRP1[114].  As
macropinocytosis  is  negatively  regulated  by  the
mTORC1 pathway[115],  CendR-induced endocytosis  is
enhanced  by  the  inhibition  of  mTORC1[114].
Additionally,  the  Epstein-Barr  virus  (EBV)  has  been
shown  to  induce  macropinocytosis  by  the  interaction
of EBV glycoprotein B (EBV gB) and NRP1 for cell
entry[116−117].  Furin  cleaves  EBV  gB  at  the  host  cell
surface, exposing CendR. CendR interacts with NRP1
to  form  a  complex  with  epidermal  growth  factor
receptor  (EGFR),  resulting  in  the  induction  of
macropinocytosis[117].  These  results  strongly  suggest
that  SARS-CoV-2  modulates  macropinocytosis via
the priming of the CoV-2 S protein by furin protease.
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The role of PIKfyve in SARS-CoV-2 cell entry has
been  shown.  PIKfyve  inhibitors  apilimod  and
YM201636  partially  block  the  entry  of  pseudovirus
cells  into  293T  cells  expressing  ACE2[20].  Apilimod
also  inhibits  SARS-CoV-2  (strain  2019-nCoV/USA-
WA1/2020)  cell  entry  into  Vero  E6  cells[22,118] and
pseudovirus  entry  into  African  green  monkey  kidney
epithelial MA104 cells[118]. Given that the involvement
of  PIKfyve  in  macropinosome  maturation  has  been
shown[19],  these  results  suggest  that  macropinosome
maturation is involved in the SARS-CoV-2 cell entry
process. 

Proposed  model  of  SARS-CoV-2  induced  ma-
cropinocytosis

As discussed above, recent research suggests a role
for  macropinocytosis  in  SARS-CoV-2  cell  entry.
Here,  we  propose  that  SARS-CoV-2  uses  two
different  receptor  proteins,  ACE2  and  NRP1  for  cell
entry,  in  which  macropinocytosis  is  utilized  as  the
main  pathway  (Fig.  3).  There  are  two  cleavage  sites
(site  1  and  2)  in  S1/S2  of  the  CoV-2  S  protein[105]

(Fig.  2B).  While site  2 is  shared with CoV S protein

and can be identified by cathepsin L, site 1 is CoV-2 S
protein-specific  and  recognized  by  furin  protease.  At
the  surface  of  host  cells,  the  CoV-2  S  protein  is
primed by cleavage at site 1 by furin, it then binds to
ACE2 via the  RBM[110,112−113].  The  cleavage  by  furin
also  expose  CendR  motif,  which  binds  to  NRP1
(Fig. 2C), inducing macropinocytosis, presumably by
stimulating  growth  factor  signaling (Fig.  3)[114].
Therefore,  we  presume  that  ACE2  binds  to  the  cell
surface following NRP1 stimulation (Fig. 3). If this is
the  case,  Abl  participates  in  macropinosome
formation[21],  and  the  resulting  macropinosomes
containing  the  viruses  are  regulated  by  PIKfyve  for
the  maturation  process[118].  Meanwhile,  given  that
PI3K,  Abl,  vimentin,  and Ras  have  been observed in
SARS-CoV cell entry[87−88,90−91], it is likely that SARS-
CoV  also  modulates  macropinocytosis.  While  the
priming process of the CoV S protein is still not clear,
TMPRSS2 can cleave the protein at  different sites[62].
In addition, the role of TMPRSS2 in the cell entries of
both  SARS-CoV  and  SARS-CoV2  has  been
reported[99,108]. Thus, cleavage by TMPRSS2 in the S2
domain  would  expose  novel  sequences,  which  might
trigger macropinocytosis.

  
Binds to ACE2 Cleavage by furin Binds to NRP1 Stimulates GFR Induces macropinocytosis 

ACE2 Abl?
PIKfyve?

SARS-

CoV-2

SARS-

CoV-2

SARS-

CoV-2

SARS-

CoV-2

SARS-

CoV-2

TMPRSS2?
Furin NRP1 Growth

factor receptor  

Fig. 3 Proposed model of SARS CoV-2 -induced macropinocytosis. SARS CoV-2 Spike protein (CoV-2 S) binds to ACE2 via the
RBD.  Furin  cleaves  CoV-2  S  at  the  S1/S2  site  for  priming.  Involvement  of  TMPRSS2  in  the  priming  process  is  suggested.  The
CendR motif is exposed at the C-terminal of CoV-2 S1 and interacts with NRP1. This interaction somehow activates growth factor
signaling and induces macropinocytosis. Abl and PIKfyve could be involved in the process. Macropinocytosis is used as a means for
the virus to internalize into host cells.
 
 

CONCLUSION

The  role  of  macropinocytosis  as  a  pathogen
infection strategy has been studied in recent  decades.
In  this  review,  we  discuss  the  involvement  of
macropinocytosis  in  SARS-CoV-2  cell  entry  and
propose  its  molecular  mechanisms.  Owing  to  the
limitations  of in  vivo experiments,  revealing  the
molecular  mechanism  that  the  virus  utilizes  for  cell
entry  could  be  a  good  strategy  to  investigate  viral
entry  as  well  as  for  developing  pharmaceutical
treatment  methods.  Outputs  from  the  cell  biology  in

terms  of  the  mechanisms/functions  of  macropino-
cytosis  should  give  us  clues  regarding  SARS-CoV  2
cell entry.
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